emm.loggers package¶
Submodules¶
emm.loggers.logger module¶
We define the logger that is going to be used in the entire package. We should not configure the logger, that is the responsibility of the user. By default, in Python the log level is set to WARNING.
- emm.loggers.logger.logSchema(df)¶
- emm.loggers.logger.logShow(df, n=20, truncate=True, vertical=False)¶
Equivalent of show() but for logging Copy pasted from https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.show
- Parameters:
n (
int
)truncate (
bool
)vertical (
bool
)
- emm.loggers.logger.set_logger(level=20, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s')¶
emm.loggers.timer module¶
- class emm.loggers.timer.Timer(label)¶
Bases:
ContextDecorator
Context manager that logs the timing of labelled blocks of code
- Example:
>>> with Timer("label") as timer: >>> timer.label("part 1") >>> ... >>> >>> timer.label("part 2") >>> ...
- difference()¶
- end()¶
- label(name)¶
Labelled checkpoint
- Args:
name: label for block of code
- Raises:
ValueError: if reserved or used name is provided
- Parameters:
name (
str
)- Return type:
None
- log_param(key, value)¶
- Parameters:
key (
str
)value (
Any
)
- log_params(value)¶
- Parameters:
value (
dict
)
- start()¶
- emm.loggers.timer.format_values(values)¶
- Parameters:
values (
dict
[str
,Any
])- Return type:
str
Module contents¶
- class emm.loggers.Timer(label)¶
Bases:
ContextDecorator
Context manager that logs the timing of labelled blocks of code
- Example:
>>> with Timer("label") as timer: >>> timer.label("part 1") >>> ... >>> >>> timer.label("part 2") >>> ...
- difference()¶
- end()¶
- label(name)¶
Labelled checkpoint
- Args:
name: label for block of code
- Raises:
ValueError: if reserved or used name is provided
- Parameters:
name (
str
)- Return type:
None
- log_param(key, value)¶
- Parameters:
key (
str
)value (
Any
)
- log_params(value)¶
- Parameters:
value (
dict
)
- start()¶