emm.threshold package

Submodules

emm.threshold.threshold_decision module

emm.threshold.threshold_decision.decide_threshold(dataset_scored, aggregation_layer=False)

Get threshold decision curves

Args:

dataset_scored: dataset from train_test_model(), with valid column. aggregation_layer: use aggregation layer? default is False.

Returns:

dictionary with threshold decision curves

Parameters:

aggregation_layer (bool)

emm.threshold.threshold_decision.get_threshold_curves_parameters(best_candidate_df, score_col='nm_score', aggregation_layer=False, aggregation_method='name_clustering', positive_set_col='positive_set')

Get threshold decision curves

Args:

best_candidate_df: dataframe with the best candidates score_col: which score column to use, default is ‘nm_score’. For aggregation use ‘agg_score’. aggregation_layer: use aggregation layer? default is False. aggregation_method: which aggregation method is used? ‘name_clustering’ or ‘mean_score’. positive_set_col: name of positive set column in best candidates df. default is ‘positive_set’

Returns:

dictionary with threshold decision curves

Parameters:
  • score_col (str)

  • aggregation_layer (bool)

  • aggregation_method (str)

  • positive_set_col (str)

Return type:

dict

Module contents